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Exact calculations of the paranematic interaction energy for colloidal dispersions
in the isotropic phase of a nematogenic material
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In a recent papdiPhys. Rev. B51, 2831(2000], Bor&nik, Stark, and Bmer have studied the stability of a
colloidal dispersion of micron-sized spherical particles in the isotropic phase of a nematogenic material. Close
to the nematic transition, the attraction due to a surface-induced paranematic order can yield flocculation. Their
calculation of the nematic-mediated interaction was based on an ansatz for the order-parameter profile. We
compare it with an exact numerical calculation, showing that their results are qualitatively correct. Besides, we
point out that in the considered regime, the exact interaction is extremely well approximated by a simple
analytical formula which is asymptotically exact.
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In recent years, a great deal of interest has been devotesdead of repulsive at distancesb¢, and that it is about two
to understanding the interactions and phase behavior of cotimes weaker at distances of the ordeédfig. 1). However,
loidal particles dispersed in a nematic ph@ée5] or in the  the order of magnitude and the sign of the interaction is
isotropic phase of a nematogenic compoufé-9]. In the  correct in the regime where the paranematic attraction com-
nematic phase, colloids experience a specific elastic interag@etes with the electrostatic repulsion. In particular, at par-
tion because they induce competing distortions of the nemticles’ separations of the order gf the paranematic attrac-
atic director field. New physics arise due to the long-rangeion remains much larger than the van der Waals attraction:
character of this interaction and the induction of topologicalthis implies that the conclusions of R¢8] regarding critical
defects[1]. flocculation phenomena remain qualitatively correct. Finally,
In the isotropic phase, the surface of colloidal particleswe show that in thevhole regime of intereshe exact inter-
can induce a local paranematic orfi&®,11], giving rise to a  action calculated numerically is extremely well approxi-
short-range elastic interacti¢f,7]. Two effects compete: an mated by a simple asymptotic formulsee Eq.(8)].

attraction due to the favorable overlapping of the parane- The Landau—de Gennel3] paranematic free-energy

matic halos and a&epulsiondue to the distortion of the di- density considered in Reff7,8] is

rector field. For small particles, of size comparable to the

nematic-isotropic coherence lenggh it has been predicted 1 3 9

that repulsion may dominate and stabilize the colloidal dis- f=-aATQ’+ -L(VQ)?+ -L,Q%Vn|? (1)

persion[6,9]. (Note that latex particles as small as 50 nm 2 2 2

have been successfully dispersed in lyotropic nematizk)

On the other hand, Barsik, Stark, and Zimer have pre- for the bulk, and

dicted that for micron-sized particles attraction domin&fds

and should allow us to trigger flocculation close to the nem- _ — 02 :

atic transition[8]. . fs=Go(Q~Qy)*+3GQQssi¢ @

The results of Boisik, Stark, and Zimer[8] are based on

a composite ansatz for the nematic director fieldnd for ~ for the surface. HereQ is the scalar order parameter amd

the scalar order-paramet€ within an uniaxial hypothesis. the nematic director. The parametgg is the order param-

It turns out that our exact calculatiof@], based on a multi- eter favored by the particles’ surface, addis the angle

polar expansion for the full tensorial order_param@r, between the direction af at the surface and the normal to

rest on the same theoretical model, and can be performdéie surfacer, which is assumed to correspond to the easy
also for micron-sized particles. axis. The coefficienta andL; are material parameterd,T

In this Brief Report, we check the correctness of the=T—T" is the difference between the actual temperaiure
paranematic interaction energy used in R8f, by compar- and the limit of stabilityT* of the isotropic phase, an@q

ing it with the exact one, numerically calculated according toandG,, are introduced to describe the strength of the surface

the method of Ref[9]. For the typical values considered in anchoring.

Ref. [8], we find that the exact interaction is attractive in- Incidentally, we note that the surface free-energy density
(2) is inconsistent within a Landau-de Gennes framework,
unlessGo=G,. Indeed, at quadratic order, the most general

*Electronic address: jbf@turner.pct.espci.fr expansion in terms of the tensorial order param&grand
"Electronic address: galatola@ccr.jussieu.fr of the normalw to the surface can be written as
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FIG. 1. Paranematic interaction energy between two spheric
particles of radiusR=0.25 um as a function of their distance to

contact d. The parameters ar@=1.8x10° Jm 2 K™% T*
=3135 K,AT=13 K, L;=9x10 "2 Jm !, Q;=0.3, Go=G,

=102 Jm 2. The corresponding nematic coherence lengtl§ is
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with Qs=—g4/39,,. Therefore, Eq(2) is compatible with
this expression only iGo,=G,,.

With the required conditioso=G,=G, the free energy
considered in Ref.8] is identical to the one we used in Ref.
[9], with the correspondendd 4]

LT:2L1, SngQ, SgZEQSI (7a)

;2 . 4
a'=zaAT, W=§G,

3 (7b)

where we have daggered the quantities appearing in[Blef.
Y\/ith the above relationships, we have numerically recalcu-

Yated the exact interaction energy between two spherical par-

ticles of radiusR as a function of their distance to contact
d—using the same parameters as in IRéf. The comparison
with the results of the ansatz of Btmi, Stark, and Zmer

=10.7 nm. The dashed-dotted line is extracted from Fig. 7 of Ref[ 7] IS shown in Fig. 1. We find a qualitative agreement, as
[7]. The full line is the exact result, numerically calculated accord-Previously discussed. Note that the exact nematic director

ing to Ref.[9]. The dotted line, practically coincident with the full Profile displays a ring defe¢®8], which is absent in the an-

line, corresponds to the asymptotic formu@&.

fs=01Qij vivj+ 921Qi; Qi + 922Qi; Qji Vi vk
+0923Qi; Quivivj vy ©)

satz of Ref[7]. For the case of micron-sized particles con-
sidered in Refs[7,8], this defect lies however in a region
where the paranematic is almost completely melted.

Finally, we have compared our numerical calculation with
the asymptotic formula obtained by us in REJ]. With the
correspondencé?), the latter reads

where summation over repeated indices is implied. For a

uniaxial tensorial order parameter

3 1
Qij=5Q| ninj— 34 |, 4)
this yields

1 3
fs=0,Q+ 5[3921+2(922+923)]Q2_Z[Zng

9
+(g22+ 40,9 Q*]sinP 0+ Zgszzsin“&. )

Matching Egs.(5) and (2) requires settingy,3=0 and con-
sequentlyg,,= 0. Equation(5) then becomes

fom > 2 i?
s——@+ Egzﬂ(Q—Qs) +3QQgsind],  (6)

2 e—E
— 8
2R+d ®

Qs
A

F=- 487TL1§<

whered=d/¢, R=R/&, andA is a constant given by

27/ 6+27/ 6+12/ 243/
R* R3 R? R

where/'=L,/G¢ is the reduced extrapolation length of the
anchoring. The nematic coherence lengtl§isy3L,/aAT.

As shown in Fig. 1, the agreement between the numerical
and the analytical calculations is excellent in the range of
separations relevant to the colloidal flocculation discussed in
Ref. [8]. Owing to its simplicity and validity, formulg8)
thus offers a straightforward means to systematically inves-
tigate the stability of such paranematic-wetted colloids.
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