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Exact calculations of the paranematic interaction energy for colloidal dispersions
in the isotropic phase of a nematogenic material
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In a recent paper@Phys. Rev. E61, 2831~2000!#, Borštnik, Stark, and Zˇumer have studied the stability of a
colloidal dispersion of micron-sized spherical particles in the isotropic phase of a nematogenic material. Close
to the nematic transition, the attraction due to a surface-induced paranematic order can yield flocculation. Their
calculation of the nematic-mediated interaction was based on an ansatz for the order-parameter profile. We
compare it with an exact numerical calculation, showing that their results are qualitatively correct. Besides, we
point out that in the considered regime, the exact interaction is extremely well approximated by a simple
analytical formula which is asymptotically exact.
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In recent years, a great deal of interest has been dev
to understanding the interactions and phase behavior of
loidal particles dispersed in a nematic phase@1–5# or in the
isotropic phase of a nematogenic compound@6–9#. In the
nematic phase, colloids experience a specific elastic inte
tion because they induce competing distortions of the n
atic director field. New physics arise due to the long-ran
character of this interaction and the induction of topologi
defects@1#.

In the isotropic phase, the surface of colloidal partic
can induce a local paranematic order@10,11#, giving rise to a
short-range elastic interaction@6,7#. Two effects compete: an
attraction due to the favorable overlapping of the paran
matic halos and arepulsiondue to the distortion of the di
rector field. For small particles, of size comparable to
nematic-isotropic coherence lengthj, it has been predicted
that repulsion may dominate and stabilize the colloidal d
persion@6,9#. ~Note that latex particles as small as 50 n
have been successfully dispersed in lyotropic nematics@12#.!
On the other hand, Borsˇtnik, Stark, and Zˇumer have pre-
dicted that for micron-sized particles attraction dominates@7#
and should allow us to trigger flocculation close to the ne
atic transition@8#.

The results of Borsˇtnik, Stark, and Zˇumer@8# are based on
a composite ansatz for the nematic director fieldn and for
the scalar order-parameterQ, within an uniaxial hypothesis
It turns out that our exact calculations@9#, based on a multi-
polar expansion for the full tensorial order-parameterQi j ,
rest on the same theoretical model, and can be perfor
also for micron-sized particles.

In this Brief Report, we check the correctness of t
paranematic interaction energy used in Ref.@8#, by compar-
ing it with the exact one, numerically calculated according
the method of Ref.@9#. For the typical values considered
Ref. @8#, we find that the exact interaction is attractive i
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stead of repulsive at distances*5j, and that it is about two
times weaker at distances of the order ofj ~Fig. 1!. However,
the order of magnitude and the sign of the interaction
correct in the regime where the paranematic attraction c
petes with the electrostatic repulsion. In particular, at p
ticles’ separations of the order ofj, the paranematic attrac
tion remains much larger than the van der Waals attract
this implies that the conclusions of Ref.@8# regarding critical
flocculation phenomena remain qualitatively correct. Fina
we show that in thewhole regime of interestthe exact inter-
action calculated numerically is extremely well approx
mated by a simple asymptotic formula@see Eq.~8!#.

The Landau–de Gennes@13# paranematic free-energ
density considered in Refs.@7,8# is

f 5
1

2
aDTQ21

3

2
L1~“Q!21

9

2
L1Q2u“nu2 ~1!

for the bulk, and

f s5GQ~Q2Qs!
213GnQQs sin2u ~2!

for the surface. Here,Q is the scalar order parameter andn
the nematic director. The parameterQs is the order param-
eter favored by the particles’ surface, andu is the angle
between the direction ofn at the surface and the normal t
the surfacen, which is assumed to correspond to the ea
axis. The coefficientsa andL1 are material parameters,DT
5T2T! is the difference between the actual temperaturT
and the limit of stabilityT! of the isotropic phase, andGQ
andGn are introduced to describe the strength of the surf
anchoring.

Incidentally, we note that the surface free-energy den
~2! is inconsistent within a Landau-de Gennes framewo
unlessGQ5Gn . Indeed, at quadratic order, the most gene
expansion in terms of the tensorial order parameterQi j and
of the normaln to the surface can be written as
©2002 The American Physical Society02-1
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f s5g1Qi j n in j1g21Qi j Qi j 1g22Qi j Qjkn ink

1g23Qi j Qkln in jnkn l , ~3!

where summation over repeated indices is implied. Fo
uniaxial tensorial order parameter

Qi j 5
3

2
QS ninj2

1

3
d i j D , ~4!

this yields

f s5g1Q1
1

2
@3g2112~g221g23!#Q

22
3

4
@2g1Q

1~g2214g23!Q
2#sin2u1

9

4
g23Q

2sin4u. ~5!

Matching Eqs.~5! and ~2! requires settingg2350 and con-
sequentlyg2250. Equation~5! then becomes

f s52
g1

2

6g21
1

3

2
g21@~Q2Qs!

213QQssin2u#, ~6!

FIG. 1. Paranematic interaction energy between two sphe
particles of radiusR50.25 mm as a function of their distance t
contact d. The parameters area51.83105 J m23 K21, T*
5313.5 K, DT51.3 K, L159310212 J m21, Qs50.3, GQ5Gn

51023 J m22. The corresponding nematic coherence length ij
510.7 nm. The dashed-dotted line is extracted from Fig. 7 of R
@7#. The full line is the exact result, numerically calculated acco
ing to Ref.@9#. The dotted line, practically coincident with the fu
line, corresponds to the asymptotic formula~8!.
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with Qs52g1/3g21. Therefore, Eq.~2! is compatible with
this expression only ifGQ5Gn .

With the required conditionGQ5Gn[G, the free energy
considered in Ref.@8# is identical to the one we used in Re
@9#, with the correspondence@14#

L†52L1 , S†5
3

2
Q, S0

†5
3

2
Qs , ~7a!

a†5
2

3
aDT, W†5

4

3
G, ~7b!

where we have daggered the quantities appearing in Ref.@9#.
With the above relationships, we have numerically recal
lated the exact interaction energy between two spherical
ticles of radiusR as a function of their distance to conta
d—using the same parameters as in Ref.@7#. The comparison
with the results of the ansatz of Borsˇtnik, Stark, and Zˇumer
@7# is shown in Fig. 1. We find a qualitative agreement,
previously discussed. Note that the exact nematic dire
profile displays a ring defect@9#, which is absent in the an
satz of Ref.@7#. For the case of micron-sized particles co
sidered in Refs.@7,8#, this defect lies however in a regio
where the paranematic is almost completely melted.

Finally, we have compared our numerical calculation w
the asymptotic formula obtained by us in Ref.@9#. With the
correspondence~7!, the latter reads

F5248pL1jS Qs

A D 2 e2d̄

2R̄1d̄
, ~8!

whered̄5d/j, R̄5R/j, andA is a constant given by

A5
27l̄

R̄4
1

6127l̄

R̄3
1

6112l̄

R̄2
1

213l̄

R̄
, ~9!

where l̄ 5L1 /Gj is the reduced extrapolation length of th
anchoring. The nematic coherence length isj5A3L1 /aDT.
As shown in Fig. 1, the agreement between the numer
and the analytical calculations is excellent in the range
separations relevant to the colloidal flocculation discusse
Ref. @8#. Owing to its simplicity and validity, formula~8!
thus offers a straightforward means to systematically inv
tigate the stability of such paranematic-wetted colloids.

al

f.
-

@1# P. Poulin, H. Stark, T.C. Lubensky, and D.A. Weitz, Scien
275, 1770~1997!.

@2# P. Poulin, V. Cabuil, and D.A. Weitz, Phys. Rev. Lett.79, 4862
~1997!.

@3# H. Stark, J. Stelzer, and R. Bernhard, Eur. Phys. J. B10, 515
~1999!.

@4# R. Yamamoto, Phys. Rev. Lett.87, 075502~2001!.
@5# D. Andrienko, G. Germano, and M.P. Allen, Phys. Rev. E63,
041701~2001!.
@6# P. Galatola and J.-B. Fournier, Mol. Cryst. Liq. Cryst.330, 535

~1999!.
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